Итоговый тест по астрономии 11 класс (УМК: Б. А. Воронцов-Вельяминов. Астрономия 10 (11)).

Цель: оценить качество общеобразовательной подготовки обучающихся 10(11) классов в соответствии с требованиями ФГОС по базовой программе.

СТРУКТУРА И РАСПРЕДЕЛЕНИЕ ЗАДАНИЙ ПО СОДЕРЖАНИЮ, ПРОВЕРЯЕМЫМ УМЕНИЯМ И ВИДАМ ДЕЯТЕЛЬНОСТИ

Вариант проверочной работы **состоит из 10 заданий**, которые различаются по содержанию и проверяемым требованиям. В качестве банка заданий использованы дидактические материалы к данному УМК, в частности Гомулина Н.Н. «Проверочные и контрольные работы», банк заданий ВПР-11, ЕГЭ.

Продолжительность выполнения работы — **до 40 минут**. При проведении работы должен использоваться **непрограммируемый калькулятор**, подвижная карта звездного неба и линейка, справочные материалы к учебнику (приложения).

Задания 2, 3, 4, 6, 7, 9 требуют краткого ответа. Задания 1, 5, 8, 10 предполагают развернутую запись решения и ответа.

В задании 1 - на классификацию астрономических терминов. Проверяется умение различать и определять понятия (конфигурация планет, синодический и сидерический периоды обращения планет, горизонтальный параллакс, угловые размеры объекта, астрономическая единица; первая и вторая космическая скорость; созвездие, высота и кульминация звезд и Солнца, эклиптика, местное, поясное, летнее и зимнее время; Солнечная система, планета, ее спутники, планеты земной группы, планеты-гиганты, кольца планет, малые тела, астероиды, планеты-карлики, кометы, метеороиды, метеоры, болиды, метеориты; звезда, модель звезды, светимость, парсек, световой год; космология, Вселенная, модель Вселенной, Большой взрыв, реликтовое излучение).

В качестве ответа необходимо развернутый ответ на вопрос: сгруппировать физические термины по общим признаком и озаглавить группы.

В задании 2—задача на оценку (перевод) единиц измерения в астрономии. Рекомендовано при решении использовать Приложение I «Наиболее важные величины, встречающиеся в астрономии» к учебнику со справочными материалами (стр. 215). Допустимо оценочное решение. Проверяется умение различать и определять основные единицы измерения в астрономии (астрономическая единица, парсек, световой год); характеризовать основные параметры небесных объектов (размеры, расстояние до объекта, угловые координаты планет и светил).

В задании 3 - задача с применением ПКЗН. Проверяются умения по теме «Практические основы астрономии»: применять подвижную карту звездного неба карту для поиска на небе определенных созвездий и звезд. Необходимо выполнить задание и **выбрать цифру верного ответа** из четырёх.

В задании 4 - на применение знаний по теме «Строение Солнечной системы». Проверяется распознавание и описание объектов Солнечной системы; умение перечислять существенные различия природы двух групп планет и объяснять причины их возникновения; объяснять устройство и принцип работы телескопа. Обучающимся необходимо провести работу с рисунком и дать численный ответ на вопрос в виде двух последовательных цифр, выбрав два верных ответа из пяти.

Задание 5 - качественная задача на анализ рисунка. Проверяется сформированность у обучающихся базовых представлений по темам «Строение Солнечной системы» и «Природа тел Солнечной системы». В частности, умение описывать природу Луны и объяснять причины ее отличия от Земли, объяснять наблюдаемые невооруженным глазом движение и фазы Луны, причины затмений Луны и Солнца; объяснять причины возникновения приливов на Земле и возмущений в движении тел Солнечной системы.

Необходимо выполнить задание и выбрать номер верного ответа из четырёх.

Задание 6 — качественная задача на анализ и описание изменения величин с использованием основополагающих законов и формул. Проверяется познавательные универсальные учебные действия: критически оценивать и интерпретировать информацию с разных позиций (анализ рисунка); предметные результаты: применять законы Кеплера, закон всемирного тяготения; описывать особенности движения тел Солнечной системы под действием сил тяготения; характеризовать особенности движения космических аппаратов в Солнечной системе. Необходимо дать ответ на три вопроса в виде трёх последовательных цифр.

Задание 7 – расчётная (оценочная, качественная) задача с развёрнутым ответом на анализ табличных данных. Проверяются регулятивные универсальные учебные действия: оценивать ресурсы, необходимые для достижения цели; определять несколько путей и выбирать оптимальный для достижения цели. Проверяются познавательные универсальные учебные действия: критически оценивать и интерпретировать информацию с разных позиций (работа с таблицами). Коммуникативные универсальные учебные действия: развернуто, логично и точно излагать свою точку зрения с использованием адекватных письменных языковых средств. Проверяются предметные результаты по теме «Строение Солнечной системы»: воспроизводить определения терминов и понятий, вычислять расстояние до планет по горизонтальному параллаксу, а их размеры по угловым размерам и расстоянию; формулировать и применять законы Кеплера, закон всемирного тяготения, понятия «первая и вторая космические скорости», определять массы планет на основе третьего (уточненного) закона Кеплера; описывать особенности движения тел Солнечной системы под действием сил тяготения по орбитам с различным эксцентриситетом; характеризовать особенности движения и маневров космических аппаратов для исследования тел Солнечной системы.

Обучающимся необходимо провести работу с табличными данными, применить основополагающие законы/определения, записать развернутое решение и численный ответ на вопрос в виде двух последовательных цифр, выбрав два верных ответа из пяти.

Задание 8 – расчётная (оценочная, качественная) задача с развёрнутым ответом на анализ данных диаграммы (схемы). Проверяются аналогично Заданию 7 регулятивные, коммуникативные УУД. Проверяются предметные результаты по темам «Солнце и звезды. Строение и эволюция Вселенной»: называть основные отличительные особенности звезд различных последовательностей на диаграмме «спектр — светимость»; сравнивать модели различных типов звезд с моделью Солнца; оценивать время существования звезд в зависимости от их массы; описывать этапы формирования и эволюции звезды; характеризовать физические особенности объектов, возникающих на конечной стадии эволюции звезд: белых карликов, нейтронных звезд и черных дыр.

Обучающимся необходимо провести работу с табличными данными, применить основополагающие законы/определения, **записать развернутое решение** и численный ответ на вопрос в виде двух последовательных цифр, выбрав два верных ответа из пяти.

Задание 9 – на установление соответствия. Проверяет результаты по темам «Солнце и звезды. Строение и эволюция Вселенной»: характеризовать физическое состояние вещества Солнца и звезд и источники их энергии, описывать внутреннее строение и способы передачи энергии из центра, объяснять и описывать наблюдаемые проявления активности и их влияние на Землю; характеризовать основные параметры галактик и распознавать их типы, интерпретировать современные данные и обосновывать справедливость моделей Вселенной, классифицировать основные периоды эволюции Вселенной. Необходимо дать ответ на три вопроса в виде трёх последовательных цифр.

Задание 10 – применение информации из текста для решения расчётной (качественной) задачи с развёрнутым ответом. Проверяется освоение познавательных универсальных учебных действий: критически оценивать и интерпретировать информацию с разных позиций. Проверяются результаты по темам «Солнце и звезды. Строение и эволюция Вселенной»: умение вычислять расстояние до звезд по годичному параллаксу, определять расстояние до звездных скоплений и галактик по цефеидам на основе зависимости «период – светимость», формулировать и применять закон Хаббла, определять расстояние до галактик на основе закона Хаббла и по светимости сверхновых; оценивать возраст Вселенной на основе постоянной Хаббла.

№ зада- ния	Умения, виды деятельности (в соответствии с ФГОС)	Планируемые результаты выпускник научится / получит возможность научиться	Уровень сложно- сти зада- ния	Макси- мальный балл за за- дания	Примерное время выполнения (в минутах)
1	Группировка по- нятий	- определять и различать понятия (астрономические явления, величины, единицы измерения величин, измерительные приборы)	Б	2	4
2	Сравнение, оценка, перевод единиц измерения в астрономии.	- различать и определять основные единицы измерения в астрономии (астрономическая единица, парсек, световой год); - характеризовать основные параметры небесных объектов (размеры, расстояние до объекта, угловые координаты планет и светил).	Б	2	3
3	Работа с ПКЗН	- применять подвижную карту звездного неба карту для поиска созвездий и звезд.	Б	1	4
4	Распознавание и описание объектов Солнечной системы	- перечислять существенные различия природы двух групп планет и объяснять причины их возникновения; - объяснять устройство и принципработы телескопа.	П	2	3
5	Распознавание и описание астрономических явлений и объектов Солнечной системы. Анализ данных (рисунок)	- умение описывать природу Луны и объяснять причины ее отличия от Земли, - объяснять наблюдаемые невооруженным глазом движение и фазы Луны, - причины затмений Луны и Солнца; - объяснять причины возникновения приливов на Земле и возмущений в движении тел Солнечной системы.	Б	1	2
6	Анализ изменения величин в процессах	- познавательные УУД: критически оценивать и интерпретировать информацию с разных позиций; - предметные результаты: применять законы Кеплера, закон всемирного тяготения; описывать особенности движения тел Солнечной системы под действием сил тяготения; характеризовать особенности движения космических аппаратов.	Б	2	3

9	Установление со- ответствия	Результаты по темам «Солнце и звезды. Строение и эволюция Вселенной»:	Б	2	3
8	Распознавание и описание астрономических явлений и объектов во Вселенной, применение законов для объяснения явлений. Анализ данных (диаграмм, схем, таблиц).	Аналогично заданию 7 - регулятивные УУД; - познавательные УУД; - коммуникативные УУД. Предметные результаты по темам по темам «Солнце и звезды. Строение и эволюция Вселенной»: называть основные отличительные особенности звезд различных последовательностей на диаграмме «спектр — светимость»; сравнивать модели различных типов звезд с моделью Солнца; описывать этапы формирования и эволюции звезды; характеризовать физические особенности объектов.	П	2	6
7	Распознавание и описание астрономических явлений и объектов Солнечной системы, применение законов для объяснения явлений. Анализ данных (таблица)	- регулятивные УУД: оценивать ресурсы (в том числе время), необходимые для достижения поставленной ранее цели; определять несколько путей достижения поставленной цели; выбирать оптимальный путь достижения цели. - познавательные УУД: критически оценивать и интерпретировать информацию с разных позиций (работа с таблицами). - коммуникативные УУД: развернуто, логично и точно излагать свою точку зрения с использованием адекватных письменных языковых средств. - предметные результаты по теме «Строение Солнечной системы»: воспроизводить определения терминов и понятий, вычислять расстояние до планет по горизонтальному параллаксу, размеры планет по угловым размерам и расстоянию; формулировать и применять законы Кеплера, закон всемирного тяготения, понятия «первая и вторая космические скорости», определять массы планет на основе третьего (уточненного) закона Кеплера; описывать особенности движения тел Солнечной системы под действием сил тяготения и космических аппаратов.	П	2	6

		- характеризовать физическое со- стояние вещества Солнца и звезд и источники их энергии, описы- вать внутреннее строение и спо- собы передачи энергии из центра, объяснять и описывать наблюдае- мые проявления активности и их влияние на Землю; - характеризовать основные пара- метры галактик и распознавать их типы, интерпретировать современ- ные данные и обосновывать спра- ведливость моделей Вселенной, классифицировать основные пери- оды эволюции Вселенной.			
		Познавательных УУД: - критически оценивать и интерпретировать информацию с раз-			
	Интерпретиро-	ных позиций. Предметные результаты по темам «Солнце и звезды. Строение			
	вать текстовую информацию.	и эволюция Вселенной»: - умение вычислять расстояние до звезд по годичному параллаксу,			
10	Решать задачи разного вида, ис- пользуя законы и формулы, связы- вающие величины	определять расстояние до звездных скоплений и галактик по цефеидам на основе зависимости «период — светимость», - формулировать и применять за-	Б	2	6
		- формулировать и применять за- кон Хаббла, определять расстоя- ние до галактик на основе закона Хаббла и по светимости сверхно- вых; оценивать возраст Вселенной			
		на основе постоянной Хаббла.			

СИСТЕМА ОЦЕНИВАНИЯ ОТДЕЛЬНЫХ ЗАДАНИЙ И РАБОТЫ В ЦЕЛОМ

Ответ на каждое из заданий 1, 2, 4, 6 - 10 оценивается в соответствии с критериями. Правильный ответ на каждое из заданий 3, 5 оценивается 1 баллом.

Максимальный первичный балл — 18.

Рекомендации по переводу первичных баллов в отметки по пятибалльной шкале:

Отметка по пятибалльной шкале	«2»	«3»	«4»	«5»
Первичные баллы	0–8	9–12	13–15	16–18

ДЕМОВЕРСИЯ ИТОГОВОГО ТЕСТА по астрономии 10 (11) класс.

Задание 1

Прочитайте перечень понятий, с которыми вы сталкивались в курсе астрономии: астрономическая единица, болид, высота звезды, звезда, парсек, планета, рефлектор, светимость, световой год, сидерический периоды обращения планет, спектроскоп, телескоп.

Разделите эти понятия на группы по выбранному вами признаку. Запишите в таблицу название каждой группы и понятия, входящие в эту группу.

Название группы понятий	Перечень понятий

3 a	πо	***	^	7
าห	ИΝ	ни	e.	Z

D				
Расположите аст	рономические	величины в	порядке их	а возрастания.

1) 20 a.e.

2) 2 пк

3) 450 000 000 км

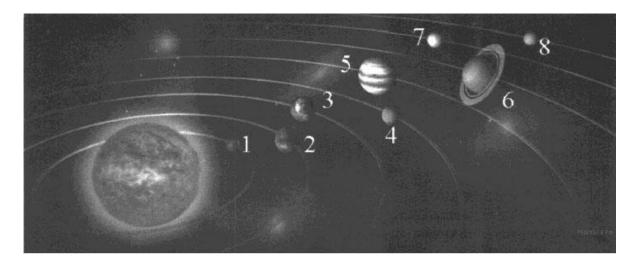
4) 3,26 св. лет

Запишите в таблицу получившуюся последовательность четырёх цифр ответа.

· · ·		

Задание 3

В каком созвездии находится галактика M31 ($\alpha = 0^{\text{ч}} \ 40^{\text{мин}}, \ \delta = +41^{0}$)?


1) Треугольник

2) Андромеда

3) Пегас

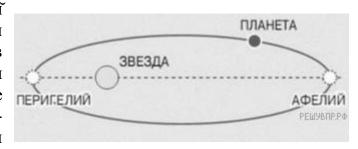
4) Скульптор

Задание 4 На рисунке приведено схематическое изображение солнечной системы.

Планеты на этом рисунке обозначены цифрами. *Выберите* из приведенных ниже утверждений *два* верных, и укажите их номера.

- 1) Планетой 2 является Венера.
- 2) Планета 5 относится к планетам земной группы.
- 3) Планета 3 имеет 1 спутник.
- 4) Планета 6 не имеет спутников.
- 5) Атмосфера планеты 1 состоит, в основном, из углекислого газа.

Задание 5


Как называется фаза Луны, изображенная на рисунке (для северного полушария)? В какое время суток Луна видна в этой фазе?

- 1) Первая четверть. Видна вечером.
- 2) Последняя четверть. Видна утром.
- 3) Новолуние. Почти не видна.
- 4) Полнолуние. Видна всю ночь.

Задание 6

Планета движется по эллиптической орбите вокруг звезды. Как меняются при переходе планеты из перигелия в афелий сила тяготения, действующая на планету со стороны звезды, а также кинетическая энергия планеты и потенциальная энергия взаимодействия планеты и звезды?

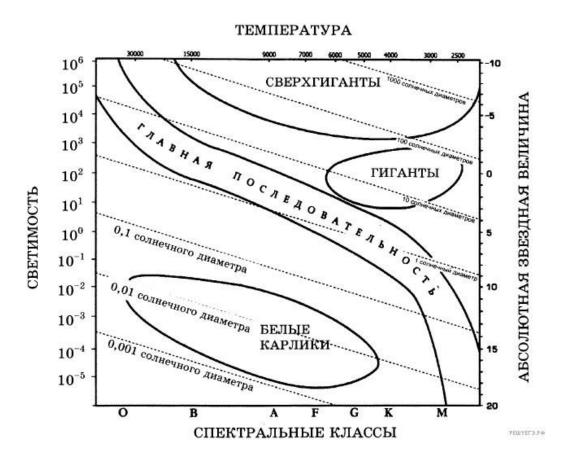
Для каждой величины определите соответствующий характер её изменения:

1) увеличится;

2) уменьшится;

3) не изменится.

Сила тяготения	Кинетическая энергия	Потенциальная энергия


Задание 7 Рассмотрите таблицу, содержащую характеристики некоторых спутников планет Солнечной системы.

Название спутника	Радиус спутника, км	раднус орбиты, тыс.км	Средняя плотность, г/см ³	Вторая космическая скорость, м/с	Планета
Луна	1737	384,4	3,35	2038	Земля
Фобос	~12	9,38	2,20	11	Марс
Европа	1569	670,9	2,97	2040	Юпитер
Каллисто	2400	1883	1,86	2420	Юпитер
Ио	1815	422,6	3,57	2560	Юпитер
Титан	2575	1221,9	1,88	2640	Сатурн
Оберон	761	587,0	1,50	770	Уран
Тритон	1350	355,0	2,08	1450 _{ej}	е Нептин.

Приведите <u>развернутое</u> решение и выберите два верных утверждения, которые соответствуют характеристикам планет и их спутникам.

- 1) Масса Луны больше массы Ио.
- 2) Ускорение свободного падения на Тритоне примерно равно 0,79 м/с2.
- 3) Сила притяжения Ио к Юпитеру больше, чем сила притяжения Европы.
- 4) Первая космическая скорость для Фобоса составляет примерно 16 м/с.
- 5) Период обращения Каллисто меньше периода обращения Европы вокруг Юпитера.

Задание 8 На рисунке представлена диаграмма Герцшпрунга — Рассела.

Приведите развернутое решение и выберите два верных утверждения о звездах, которые соответствуют диаграмме.

- 1) Плотность белых карликов существенно меньше средней плотности гигантов.
- 2) Звезда Канопус, поскольку её радиус почти в 65 раз превышает радиус Солнца, может быть сверхгигантом.
- 3) Температура звёзд спектрального класса G в 3 раза выше температуры звёзд спектрального класса A.
- 4) Солнце относится к спектральному классу В.
- 5) Звезда Альтаир имеет температуру поверхности 8000 К и относится к звёздам спектрального класса А.

Задание 9 Установите соответствие между видом галактик и его изображением. Для каждого вида галактик из первого столбца подберите соответствующий рисунок из второго столбца.

щий рисунок из второго столбца.					
Виды галактик	ИЗОБРАЖЕНИЕ				
А) эллиптическая шаровая галактикаБ) спиральная галактикаВ) неправильные галактики	1) Карликовая галактика NGC 1569, открытая Уильямом Гершелем в 1788 года, находится в созвездии Жираф на расстоянии около 11 млн св. лет от Земли				
	2) Туманность Андромеды (М31, NGC 224) — видна невооружённым взглядом, ближайшая к Млечному Пути большая галактика расположена в созвездии Андромеды и удалена на расстояние 2,52 млн св. лет (772 килопарсек).				
	3) галактика М 49 - самая яркая в Скоплении Девы (NGC 4472), находится на расстоянии около 52 млн. св. лет (16070 килопарсек) от Земли, открыта французским астрономом Шарлем Мессье в 1771 году.				

Запишите в таблицу выбранные цифры под соответствующими буквами.

A	Б	В

Задание 10

Прочитайте текст и выполните задание: выберите из предложенного перечня два верных утверждения и запишите номера, под которыми они указаны.

- 1) В виде математической формулы закон Хаббла можно записать как $\upsilon = H/r$.
- 2) Возраст Вселенной, оцененный на основе закона Хаббла, составляет около 13 млрд лет.
- 3) Радиус Вселенной, оцененный на основе закона Хаббла, составляет около $1.2\cdot 10^{26}\,\mathrm{m}$
- 4) Идея о расширяющейся «горячей Вселенной является теория, которая пока не имеет практического подтверждения.
- 5) В настоящее время Вселенная стабильна и не изменяется.

Закон Хаббла¹

(¹текст основан на информации учебника «Физика. 11 класс. Базовый уровень» Пурышева Н.С. и др.)

Наблюдение разбегания галактик и их изучение привело астрономов к выводу, что Вселенная расширяется. В 20-х гг. XX века американский астроном Эдвин Пауэлл Хаббл установил, что скорость v, c которой галактика удаляется от нас, пропорциональна расстоянию r до неё.

Коэффициент пропорциональности назвали постоянной Хаббла, выраженный км/(с • Мпк) он показывает среднюю скорость разлёта двух галактик в современную эпоху, разделённых расстоянием в 1 Мпк. Изначально сам Э. Хаббл считал, что ее значение должно быть порядка 600~000~км/час на миллион световых лет (примерно в десять раз больше, чем есть сейчас). Однако дальнейшие исследования показали, что во-первых, определение постоянной Хаббла разными методами даёт неоднозначные результаты от $66,93\pm0,62~\text{км/(c • Мпк)}$ до $74,03\pm1,42~\text{км/(c • Мпк)}$. Во-вторых, что постоянная Хаббла изменяется со временем: чем старше Вселенная, тем меньше скорость её расширения. Смысл термина «постоянная» заключается в том, что в каждый данный момент времени во всех точках Вселенной величина Н одинакова. При решении задач школьного курса астрономии будем считать, что, если скорость измерять в км/с, а расстояние до галактики в мегапарсеках, то коэффициент пропорциональности, составляет H=72~км/(c • Мпк).

Из астрономических наблюдений складывается впечатление, как будто произошёл взрыв и все галактики разлетаются от центра этого взрыва, в котором находится наша Галактика. Наблюдаемое расширение Вселенной объясняется на основе теории тяготения, разработанной Эйнштейном, а из закона Хаббла легко оценить, когда этот взрыв произошёл и возникла наблюдаемая Вселенная. Для этого путь г, пройденный галактикой, нужно поделить на её скорость v.

В начале всё вещество метагалактики было сосредоточено в небольшом объёме и плотность вещества была настолько высокой, что ни галактик, ни звёзд не существовало. Пока не ясны ни физические процессы, протекавшие до этого сверхплотного состояния вещества, ни причины, вызвавшие расширение Вселен-

ной. Ясно одно, что со временем расширение привело к значительному уменьшению плотности вещества и на определённом этапе расширения стали формироваться галактики и звёзды.

Расстояние, до которого в принципе мы можем видеть Вселенную сейчас, называют радиусом Вселенной, его так же можно оценить с помощью закона Хаббла. Так как максимальная скорость не может превышать скорости света, то максимальное расстояние, до которого мы можем наблюдать небесные тела, соответствует скорости разбегания галактик со скоростью света $\upsilon = c = 3 \cdot 10^5$ км/с.

Некоторые видят в наблюдаемом разбегании галактик аналогию с разлётом вещества во время взрыва, поэтому описанная теория расширения Вселенной получила название теории Большого взрыва.

В 1965 году с помощью радиотелескопа было обнаружено микроволновое излучение, не связанное ни с одним известным источником радиоизлучения, идущее со всех сторон. Оно имеет максимум на длине волны $\lambda_{max} = 1$ мм и соответствует излучению вещества, нагретого до температуры всего лишь 2,7 К. Это излучение получило название реликтового (оставшегося от прошлых эпох). Его открытие подтверждает справедливость теории «Большого взрыва».

Ответы для самопроверки

№ п/п	Правильный ответ		для самопроверки Решение		Макси- мальный
1.	Астрономические объект нета, болид, звезда;		Критерии оценивания выполнения валлы Баллы		балл
	Астрономические величи высота звезды, сидеричест риоды обращения планет,	кий пе-	Верны все четыре элемента ответа.		
	мость; Единицы измерения: парсек, световой год, астрономическая единица;		Верны три из четырёх элементов ответов.		2
			Верны менее трёх из четырёх элементов ответов.		
	Приборы: рефлектор, спенскоп, телескоп	стро-	Максимальный балл 2		
2.	3142		Допустимо оценочное решение. Рекоме довано при решении использовать Прилжение I «Наиболее важные величин	10-	
	Критерии оценивания выполнения задания	Балл ы	встречающиеся в астрономии» к учебни со справочными материалами (стр. 21	ку 5).	
	Верны все четыре элемента в последовательности	2	Для эффективного сравнения необходи перевести данные в одинаковые единии (например, а.е.)	цы	
Допущена одна ошибка в переводе единиц (верны два элемента последовательности)		1	1) 1 а.е. = 150 млн. км - среднее расстояние от Земли до Солнца. Тогда 20 а.е . = 3 000 млн. км 2) 1 пк = 206 265 а.е. — «параллакс-секунда», расстояние до объекта, годичный		2
	Допущены две ошибки в переводе (верны менее двух элементов последовательности)		тригонометрический параллакс которо равен одной угловой секунде. Тогда 2 пк = 412 530 а.е. 3) 450 000 000 км = 450 млн. км = 3 а.е.		
	Максимальный балл	2	4) 3,26 св. лет = 1 пк = 206 265 а.е. = $3 \cdot 10^{13}$		
3.	2		 км На ПКЗН необходимо найти галактику M31 по её координатам α = 0ч 40 мин, δ = +41°. Это спиральная галактика, называемая Туманность Андромеды располагается созвездии Андромеда 	І В	1
4.	13 (или 31)		Применим знания о порядок расположен планет в Солнечной системе, тогда на ри сунке видно, что цифрами обозначены: 1- Меркурий, 2- Венера, 3- Земля, 4-Мар	- oc,	
	Критерии оценивания вы- полнения задания	Балл ы	5- Юпитер, 6- Сатурн, 7- Уран, 8 - Непту 1) Планетой 2 является Венера - ВЕРНО		
	Верны оба элемента ответа.	2	2) Планета 5 – это Юпитер, она относитс к планетам-гигантам. Утверждение 2 неверно.	Н	2
	Верен один из двух элементов ответов.	1	3) Планета 3 — Земля, имеет один спутни: — Луну. Утверждение 3 ВЕРНО.		
	Нет верных ответов. <i>Максимальный балл</i>	0 2	4) На данный момент у Сатурна известно 62 спутников. Утверждение 4 неверно.		
			5) Планета 1 – Меркурий, практически ли шён атмосферы. Утверждение 5 неверно.		

5.	<u> </u>		II	
	1) Первая четверть. Видн ром.	на вече-	На рисунке видно, что затемнена западная половина Луны. По определению «первая четверть — это фаза Луны, при которой освещена ровно половина видимой её части, причём, доля освещённой части в этот момент увеличивается (то есть Луна движется от новолуния к полнолунию). Для северного полушария (то есть на всей территории Россия) в этой фазе Луна находится к востоку от Солнца, и освещена западная часть видимой стороны Луны. Моменты восхода и захода Луны зависят от времени года, но во всех случаях Луна в первой четверти видна вечером и в начале ночи.	1
6.	Еритерии оценивания выполнения задания Верны все три элемента ответа. Верны два из трёх элементов ответов. Нет верных ответов. Максимальный балл	Балл ы 2 1 0 2	1) Силы взаимного гравитационного притяжения двух тел по закону всемирного тяготения Ньютона прямо пропорциональны произведению их масс и обратно пропорциональны квадрату расстояния между ними $F = \frac{Gm1m2}{R^2}$. Как видно из рисунка - при движении от перигелия к афелию расстояние от звезды до планеты увеличивается, следовательно, сила тяготения, действующая на корабль со стороны Земли, уменьшается (2). 2) Так же при движении от перигелия к афелию скорость планеты уменьшается, следовательно, кинетическая энергия Ек = m·v²/2 также уменьшается. 3) В космосе отсутствуют силы сопротивления среды, следовательно, можно применить закон сохранения полной механической энергии: Еполная = Еп + Ек сохраняется. Тогда уменьшение кинетической энергии приведет к увеличению потенциальной энергии (при движении от перигелия к афелию расстояние от звезды до планеты увеличивается).	2
7.	Ответ 23 (или 32) 1) Решим задачу <u>оценочно</u> . Масса небесного тела находим через формулу плотности: $M = \rho \cdot V$, причём, объём V по математической формуле кратен кубу радиуса R^3 . По таблице видно, что и радиус, и средняя плотность Луны меньше, чем у Ио, следовательно, масса Луны меньше массы Ио. Утверждение 1 неверно. 2) Найдём ускорение свободного падения на небесном теле g через		По анализу развёрнутого ответа проверяются регулятивные УУД: оценивать ресурсы (в том числе время), необходимые	2

вторую космическую скорость $v_{II} = \sqrt{2gR}$

На Тритоне $g = \frac{v^2}{2R} = 0.78 \text{м/c}^2$. Утверждение **2 ВЕРНО**. Допустимо решение методом исключения.

- 3) Решим задачу <u>оценочно</u>. По закону всемирного тяготения сила притяжения двух небесных тел равна $F = \frac{Gm1m2}{R^2}$. Масса Ио больше массы Европы и Ио находится ближе к Юпитеру, значит, сила притяжения Ио к Юпитеру больше, чем сила притяжения Европы. Утверждение 3 ВЕРНО.
- 4) Первая и вторая космические скорости связаны соотношением

$$v_2 = \sqrt{2} \cdot v_1 = \sqrt{2G \frac{M_n}{R_n}}$$

Тогда первая космическая скорость для Фобоса $v_1 = v_2 / \sqrt{2} \approx 8$ м/с.

Утверждение 4 неверно. Можно решить <u>оценочно:</u> вторая космическая скорость всегда больше первой.

5) Решим задачу <u>оценочно</u>. По третьему закону $\frac{T_1^2}{T_2^2} = \frac{a_1^3}{a_2^3}$ Кеплера

По таблице видно, что радиус орбиты Каллисто \boldsymbol{a} больше, чем у Европы, значит он дальше от Юпитера и, следовательно, период обращения \boldsymbol{T} Каллисто вокруг Юпитера больше периода обращения Европы.

Утверждение 5 неверно.

По анализу развёрнутого ответа проверяются **познавательные УУД:** критически оценивать и интерпретировать информацию с разных позиций — извлечение данных при работе с таблицами, их верная интерпретация, сравнение и анализ.

По анализу развёрнутого ответа **проверяются коммуникативные УУД:** развернуто, логично и точно излагать свою точку зрения с использованием адекватных письменных языковых средств.

По критериям проверяются предметные результаты по теме «Строение Солнечной системы»: воспроизводить определения терминов и понятий, вычислять расстояние до планет по горизонтальному параллаксу, а их размеры по угловым размерам и расстоянию; формулировать и применять законы Кеплера, закон всемирного тяготения, понятия «первая и вторая космические скорости», определять массы планет на основе третьего (уточненного) закона Кеплера; описывать особенности движения тел Солнечной системы под действием сил тяготения по орбитам с различным эксцентриситетом; характеризовать особенности движения и маневров космических аппаратов для исследования тел Солнечной системы.

Критерии оценивания выполнения задания	Баллы	
Верны оба элемента ответа.	2	
Верен один из двух элементов ответов.	1	
Нет верных ответов.	0	
Максимальный балл	2	

8.

25 (или 52)

По анализу развёрнутого ответа проверяются регулятивные, познавательные, коммуникативные УУД (аналогично Заданию 7).

Рекомендовано при решении использовать Приложение V «Наиболее яркие звёзды, видимые на территории России» к учебнику со справочными материалами (стр. 218) или диаграмму Герцшпрунг -Рассела.

1) Сравниваем плотность <u>оценочно</u> как отношение массы к объёму. Из диаграммы находим, что белые карлики имеют диаметр порядка 0,01 солнечного, а гиганты — 10 солнечных (отличаются в 1000 раз меньше). Объёма кратен кубу радиуса, тогда объём карликов в 10⁹ раз меньше, чем у гигантов. Чтобы иметь среднюю плот-

2

Критерии оценивания выполнения задания	Балл
Верны оба элемента ответа.	2
Верен один из двух элементов ответов.	1
Нет верных ответов.	0
Максимальный балл	2

ность меньше, чем у гигантов, массы белых карликов должны быть в миллиард (1000^3) раз меньше. Но это не так. По определению «белые карлики — компактные звёзды, состоящие из электронно-ядерной плазмы, лишённые источников термоядерной энергии и светящиеся благодаря своей тепловой энергии, постепенно остывая в течение миллиардов лет; по массе сравнимы или превышают массу Солнца, но при этом они имеют радиус в сотни раз меньше солнечного. По определению «Гигант — тип звёзд, которые имеют радиусы от 4 до 100 солнечных радиусов и светимости от 10 до 1000 светимостей Солнца. Светимость таких звёзд больше, чем у звёзд главной последовательности, но меньше, чем у сверхгигантов.»

Тогда, плотность белых карликов существенно больше средней плотности гигантов. Утверждение 1 неверно.

- 2) Большой радиус Канопуса (65 R_c) позволяет отнести его к сверхгигантам. По определению «Сверхгиганты одни из наиболее ярких, крупных и массивных звёзд, массы сверхгигантов от 10 до 70 масс Солнца, светимости от 30 000 до миллиона раз превышает солнечную, радиусами могут сильно отличаться от 30 до 1000 солнечных. Утверждение 2 ВЕРНО.
- 3) По диаграмме: температура звёзд спектрального класса G около 6000 K (Солнце), а меньше температуры звёзд спектрального класса A около 7400 10000 K. Утверждение 3 неверно.
- 4) Мы знаем, что Солнце с температурой поверхности 6000 К относится к спектральному классу G2, а не В. Утверждение 4 неверно.
- 5) По определению к спектральному классу А относятся звезды, имеющие температуру поверхности от 7400 до 10 000 К, тогда Звезда Альтаир, имея температуру поверхности 8000 К, точно относится к классу А. Утверждение 5 ВЕРНО.

9.

321

Критерии оценивания выполнения задания	Балл
Верны все три элемента ответа.	2

Согласно классификации Э. Хаббла, по внешнему виду и структуре галактики, подразделяются на три класса, каждый из классов имеет свои подклассы:

- эллиптические (E0 шаровые, E1 E7 эллиптические с разной степенью сжатия);
- спиральные (S0 линзообразные; Sa, Sb, Sc спиральные с нормальными спиралями; SBa, SBb, SBc - спиральные с пересечёнными спиралями (перемычками или барами);

2

Верны два из трёх элементов ответов.	1
Нет верных ответов.	0
Максимальный балл	2

• неправильные (иррегулярные/безформенные) Ir.

По фото видно, что

- А) эллиптическая шаровая галактика это галактика М 49 в Скоплении Девы (ответ 3):
- Б) спиральная галактика это Туманность Андромеды M31 (ответ 2)
- В) неправильная галактика это карликовая галактика NGC 1569 в созвездии Жираф (ответ 1).

1) Ложно, поскольку из текста следует, что «скорость v, с которой галактика удаляется от нас, пропорциональна расстоя-

- ляется от нас, пропорциональна расстоянию г до неё», тогда закон Хаббла можно записать как υ = H·r

 2) ВЕРНО. Из текста следует, что для определения возраста Вселенной нужно
- «путь r, пройденный галактикой, поделить на её скорость υ »: $t = \frac{r}{v} = \frac{r}{H\,r} = \frac{1}{H} \approx 0,4 \cdot 10^{18}\,\mathrm{c}$ $\approx 13 \cdot 10^9\,\mathrm{net} = 13\,\mathrm{миллиардов}$ лет !
- 3) ВЕРНО. Из текста следует, что «максимальное расстояние, до которого мы можем наблюдать небесные тела, соответствует скорости разбегания галактик со скоростью света $\upsilon=c$. Тогда радиус Вселенной, оцененный на основе закона Хаббла, составляет: $R=\frac{c}{H}=4\cdot 10^{3}$ Мпк = $1.3\cdot 10^{10}$ световых лет = $1.24\cdot 10^{26}$ м $\approx 1.2\cdot 10^{26}$ м
- 4) Ложно, так как из текста следует, что идея о расширяющейся «горячей Вселенной» имеет практическое подтверждения в виде реликтового излучение, обнаруженного в 1965 г. с помощью радиотелескопа.
- 5) Ложно, из текста следует, что процесс расширения и эволюции Вселенная является непрерывным и продолжается в настоящее время и в будущем.

10.

23 (или 32)

Критерии оценивания выполнения задания	Баллы
Верны оба элемента ответа.	2
Верен один из двух элементов ответов.	1
Нет верных ответов.	0
Максимальный балл	2

2